LEVITATED DIPOLE EXPERIMENT
SUMMARY OF ACTIVITIES (JANUARY - MAY, 1998)
1. OVERVIEW
Our primary tasks have been completion of the design specifications for the levitated ring, control and safety systems, and vacuum chamber.
The design/engineering group consists of J. Minervini, J. Schultz (Team Leader), R. Camille, P. Michael, L. Myatt, B. Smith, A. Radovinsky, S. Pourrahimi, P. Thomas, P. Wang, A. Zhukovsky, D. Hale, and S. Cochin. The design team is assisted by the scientific team consisting of Darren Garnier, Jay Kesner, and Mike Mauel. John Schmidt from PPPL has guided our design specifications for the levitated ring position feedback control system. Leslie Bromberg has guided our investigations of dipole-based fusion power systems.
2. DESIGN OF THE LEVITATED RING
A major activity of the design/engineering team has been the detailed specification of the levitated ring. The levitated ring is made of two counter-wound, high-current, self-supporting superconducting coils enclosed by a toroidally-shaped cyrostat. The design objectives of the coil included high reliability and relative ease of operation.
After consideration of several options, an advanced Nb3Sn superconducting strand was selected for LDX having a high critical current density and critical temperature owing to its relatively low copper/noncopper fraction of 0.428. The strand will be cabled into two lengths and then heat-treated. This cable will then be soldered into a 7.95 mm by 2.01 mm, C-shaped, half-hard copper channel to provide structural integrity for the coil.
Bids for Nb3Sn strand and cable were solicited from several companies, Oxford, Mitsubishi, IGC, Supercon, and Vacuumschmelze. The most promising bid came from IGC since this bid was the lowest and IGC was the only company willing to do the cabling.
On May 12, Joel Schultz, Brad Smith, and Darren Garnier conducted a site-visit of the IGC Advanced Superconductors division in Waterbury, CN to discuss fabrication of the superconducting strand and conductor for the LDX F-coil magnet. This fabrication will include fabrication of a short length of trial cable and channel. Since IGC has an operating solder line, the time required for fabrication of the completed conductor meets with our proposed schedule.
A detailed Statement of Work (SOW) for Production of LDX F-Coil Strand and Cable was completed and sent out to IGC on 5/28/98.
The detailed design specification for the cyrostat for the levitated ring is nearly complete. Design calculations have shown the cryostat will keep the magnet temperature between 5 and 11 Deg K during at least 8 hours of levitated operation. The titanium alloy helium vessel is surrounded by a radiation shield with a large thermal mass made from lead foil. This was a design innovation used by the FM-1 levitron. The shield is wrapped with a super insulation (MLI), which is surrounded by a stainless steel room temperature vacuum shell. The LDX ring will be inductively energized.
We have developed a novel He cryostat design which greatly simplifies ring operation. This concept should significantly reduce the down time associated with ring maintenance and cooling. A patent application is presently pending for this cryostat concept.
3. DESIGN OF THE RING CATCHER AND CONTROL SYSTEMS
Conceptual design of the launch and catcher system is continuing and calculations are being carried out to minimize the forces present in the floating coil during a fall. The launcher is used to position the ring near the center of the plasma vacuum vessel prior to energization of the levitation and control coils. The ring catcher system consists of a stainless-steel "web" which is lifted away from the vacuum chamber walls in the event of a loss-of-control accident.
General specifications of the levitation position control system have been made. A small permanent magnet has been levitated using an active feedback control system which controls the current in an overhead levitation coil as will be used in the initial phase of LDX. For this table-top system, the position of the levitated magnet was detected by the interruption of a light-beam as proposed by John Schmidt.
4. PRESENTATIONS AND WORKSHOPS
During the past few months, we have participated in several workshops, made presentations at various meetings, and conducted two internal design meetings. These are listed below:
- January 22, 1998: LDX "Kick-Off" Meeting. MIT. The purpose of this day-long meeting was to define the project design work for the first few months. The agenda was:
9:00 Mauel/Kesner - Organization of workshop.
9:15 Minervini - Organization of LDX construction.
9:30 Kesner - Physics Basis of the LDX Project.
10:00 Mauel - Experimental Basis for LDX - ECH experiment,diagnostics.
11:00 Mauel IAP talk, "LDX, a new experiment to build a star".
1:00 B. Smith - Design and construction schedule.
1:20 J. Schmidt - PPPL collaboration, optical monitor system.
1:50 J. Schultz - Superconducting options, cryogenics, ring control.
2:30 Discussion
4:00 Summary of workshop, discussion of schedule. (Mauel)
- March 10, 1998: DOE-OFES FY2000 Budget Planning Meeting (Germantown).
- "LDX: Levitated Dipole Experiment", M. Mauel.
- March 18-20, 1998: US-Japan Workshop on Physics of High-Beta Fusion Plasmas (Seattle, WA). Presented one paper (invited talk) and one poster:
- "The Dipole Plasma Confinement Concept", M. Mauel and J. Kesner
- "Issues with Dipole-Based Fusion Reactors", L. Bromberg
- March 24, 1998: Submitted Synopsis for the 17th IAEA Conference of Plasma Physics and Controlled Nuclear Fusion (Accepted).
- "PLASMA CONFINEMENT IN A MAGNETIC DIPOLE", J. Kesner, L. Bromberg, M. Mauel and D. Garnier.
- March 23-25, 1998: Sherwood Fusion Theory Meeting (Atlanta).
- "Stability of a Levitated Dipole", J. Kesner.
- April 3, 1998: Internal Review of Levitated Ring Design (MIT). We invited Bruce Montgomery, Jim Irby, Prof. Joe Smith (MIT), and Jay Jayakumar for a full day review of the LDX design. The charge to the panel was:
- We have presented a design for the superconducting ring based on (1) Nb3Sn wire, (2) novel He cryostat, (3) inductive charging and (4) associated systems and controls. Do you believe this design to be feasible?
- Do you believe we should consider other design approaches or options to ensure an optimized design which is reasonably priced, meets our performance requirements and avoids risk?
The agenda for the internal review was:
9:00 Schultz - Overview
9:30 Kochan - Machine Design
10:00 Schultz - Key Issues,Levitating Magnet Design
10:30 Radovinsky - External Magnet Design, Catcher Requirements
11:30 Schmidt - Magnet Position Control
12:30 Zhukovsky - Cryostat Design
1:30 Myatt - Structural Analysis
2:00 B. Smith - Budget and Schedule
2:30 Comments from Review Panel
3:00 Discussion
April 6-9, 1998: INNOVATIVE CONFINEMENT CONCEPTS WORKSHOP 1998 (PPPL). Presented Dipole White Paper to community, one invited talk, and one poster.
- "The Dipole Fusion Confinement Concept:A White Paper for the Fusion Community", J. Kesner, L. Bromberg, M. Mauel, D. Garnier, and J. M. Dawson.
- "The Levitated Dipole Experiment (LDX)" M. Mauel
- "Issues with Dipole-Based Fusion Reactors", L. Bromberg
May 28, 1998: Fusion Enabling Technology Workshop (Germantown).
- "LDX: A Magnet User's Example", M. Mauel
5. MIT STUDENT REACTOR STUDY
A graduate course, titled "The Engineering of Fusion Reactors", NE22.63, was taught by the MIT Nuclear Engineering Department this spring. The course was taught by by R. Ballinger, L. Bromberg and E. Chaniotakis, and J. Kesner and there were 8 students enrolled. The course focused on a class project of a design of a levitated dipole reactor that utilizes a high temperature super-conductor and was based on a D-He3 cycle. The base case design had a ring of 2.5 m radius and produced 80 MWe electric. (A major advantage of a dipole based reactor is the ability to ignite advanced fuels in relatively small size units). The design included a particularly creative approach to an internally refrigerated ring that utilizes near term technology that has been developed within the space program.
6. SITE PREPARATION
The preparation of the experimental hall is well underway. The preexisting Plasma Arc Furnace has been removed, and the floor and cable trench covers have been repaired and painted. The control room, shared with the Pulse Test Facility (PTF) and the Versatile Toroidal Facility (VTF), is being renovated with new flooring and computer stations. Setup laboratory space is being made available in adjacent rooms.
7. THE LDX WEB PAGE
The LDX web page provides an introduction to the LDX research program. This site will be periodically updated with news and progress. The LDX web site is located at http://www.pfc.mit.edu/ldx/
8. DESIGN DOCUMENTATION
Detailed documentation of the LDX design are contained in the following technical memos:
- LDX-MIT-ALRadovinsky-121297-01, A.L. Radovinsky, "Basic Electromechanics of the LDX Magnet System," December 12, 1997
- LDX-MIT-JHSchultz-0109-01, Joel H. Schultz, "LDX General Requirements Document, Rev. 0," January 9, 1998
- LDX-MIT-JHSchultz-0109-02, Joel H. Schultz, "LDX Machine Design Description, Rev 0," January 9, 1998
- LDX-MIT-ALRadovinsky-011398-01, A.L. Radovinsky, "Inductive Charging of the F-Coils," January 13, 1998
- LDX-MIT-JHSchultz-011898-01, Joel H. Schultz, "LDX Structural and Cryogenic Design Criteria, Rev 0," January 18, 1998
- LDX-MIT-JKesner-011898-01, Jay Kesner, "Physics requirements for the LDX Coil Set," January 18, 1998
- LDX-MIT-JHSchultz-010998-01, Joel H. Schultz, "LDX Machine Design Description, Rev 1," January 20, 1998
- LDX-MIT-AZ-012198-01, Alex Zhukovsky, "LDX Machine Helium Feed throughs and Cooling System," January 21, 1998
- LDX-MIT-SP-012398-01, S. Pourrahimi, "Proposed Heat Leak Revision," January 23, 1998
- LDX-MIT-RLMyatt-012898-01, R.L. Myatt, "Field Analysis of LDX F & L coils," January 28, 1998
- LDX-MIT-ALRadovinsky-013098-01, A.L. Radovinsky, "Inductive Charging of the F-coils. First Stage Optimization of the C-coil," January 30, 1998
- LDX-MIT-ALRadovinsky-020498-01, A.L. Radovinsky, "Inductive Charging of the F-coils. C-coil that is just right," February 4, 1998
- LDX-MIT-JKesner-020598-01, J. Kesner, "Improved F-Coil Design," February 5, 1998
- LDX-MIT- RLMyatt-021398-01, R.L. Myatt, "Buckling stability and stress analysis of LDX vacuum vessel," February 13, 1998
- LDX-PPPL-JSchmidt-021798-01, J. Schmidt, "STABILIZATION ANALYSIS AND RECOMMENDATIONS," February 17, 1998
- LDX-CU-MMauel-021798-01, M. Mauel, "Preliminary Design of the Bottom L-Coil and Helmholtz Coils," February 17, 1998
- LDX-MIT-SPourrahimi-022098-01, S. Pourrahimi, " A User Friendly F-Coil Concept," February 20, 1998
- LDX-MIT-ARadovinsky-022098-01, A.L. Radovinsky, " T-coil System Design," February 20, 1998
- LDX-MIT-PThomas-022398, P. Thomas, "The NW-21 Chilled Water System," February 23, 1998
- LDX-MIT-AZhukovsky-2-24-98, A. Zhukovsky, "Basic heat leak in the LDX Cryostat," Feb 24, 1998
- LDX-MIT-RLMyatt-022798-01, L. Myatt, "Field & Stress Analyses of LDX F & L Coils," February 27, 1998
- LDX-MIT-ALRadovinsky-030998-01, A.L. Radovinsky, " Tilt and Slide Control Coils," March 9, 1998
- LDX-MIT-ALRadovinsky-031098-01, A.L. Radovinsky, " Donut Cable Catcher Concept," March 10, 1998
- LDX-MIT- AZ- 031398-01, A. Zhukovsky, "LDX Cryostat Support System Requirements," March 13, 1998
- LDX-MIT- AZ- 031798-01, A. Zhukovsky, "LDX Cryostat Support System Requirements," March 17, 1998
- LDX-MIT-ALRadovinsky-031898-01, A.L. Radovinsky, " Water Cooled Copper Wound C-coil," March 18, 1998
- LDX-MIT-JHSchultz-032098-01, J.H. Schultz, "LDX Machine Design Drawings," March 20, 1998
- LDX-MIT-AZ-032098, A. Zhukovsky and S. Kochan, "LDX Cryostat Dimensions," March 23, 1998
- LDX-MIT-PM-032698-01, P. Michael, ": Phil Michael, "Instrumentation to determine superconducting status of LDX F-coil ," March 26, 1998
- LDX-MIT-RLMyatt-033098-01, R.L. Myatt, "Effects of internal pressure on the LDX He vessel," March 30, 1998
- LDX-MIT-AZ-032798, A.Zhukovsky, " LDX Retractable He Transfer Lines," March 27, 1998
- LDX-MIT-RLMyatt-040898-01, R. Leonard Myatt, " Effects of material selection on LDX He vessel size and weight," April 8, 1998
- LDX-MIT-ALRadovinsky-040898-01, A.L. Radovinsky, "Alternative Grabber Design" April 8, 1998
- LDX-MIT-AZ-041598, A. Zhukovsky, "LDX Cryostat Thermal Performance" April 15, 1998
- LDX-MIT-JHSchultz-041698-01, Joel Schultz, "Final Strand Selection for the LDX F-Coil, Rev. 0" April 16, 1998
- LDX-MIT-ALRadovinsky-042898-01, A.L. Radovinsky, "Deceleration of Cryostat with Different Catcher Concepts" April 28, 1998
- LDX-MIT-AZ-042998, A. Zhukovsky, "MIT Reference Design of LDX Cryostat" April 29, 1998:
- LDX-MIT-AZ-043098, A. Zhukovsky, "LDX Cryostat Requirements" April 30, 1998.
- LDX-MIT-AZ-050198, A. Zhukovsky, "LDX Cryostat Requirements Rev. 1" May 1, 1998
- LDX-MIT-AZhukovsky-050498-01, A. Zhukovsky, "Equilibrium temperature of LDX F coil after a quench" May 4, 1998
- LDX-MIT-AZhukovsky-050898091, A. Zhukovsky, "Maximum temperature of LDX cryostat wall" May 8, 1998
- LDX-MIT-AZ-051298, A. Zhukovsky, "LDX Cryostat Requirements Rev. 3" May 12, 1998
- LDX-MIT-JSchultz-051398-01, J.H. Schultz, B. Smith, and D. Garnier, " Trip Report: Visit to Intermagnetics General Corporation Advanced Superconductors Division," May 13, 1998
- LDX-MIT-AZ-051398, A. Zhukovsky, "MIT Reference Design of LDX Cryostat, Rev.1," May 13, 1998
- LDX-MIT-ALRadovinsky-052098-01, A.L. Radovinsky, "Catcher Revision", May 20, 1998
Last modified June 5, 1998