Plasma Science and Fusion Center Massachusetts Institute of Technology |
|||
|
|||
high-energy-density physics |
|||
|
High-Energy-
Density Physics |
The High-Energy-Density Physics Division, headed by Dr. Richard Petrasso,
studies the physics of inertial-confinement fusion (ICF) plasmas and high-energy-density plasmas using experimental and theoretical methods developed by MIT and collaborators.
ICF experiments utilizing special nuclear diagnostics are currently performed at the OMEGA laser facility at the University of Rochester Laboratory for Laser Energetics and at the National Ignition Facility at the Lawrence Livermore National Laboratory. Special nuclear diagnostics make it possible to determine the spatial and temporal variations in fusion burn and in plasma areal densities through spectral, temporal, and imaging measurements of fusion products and other ions. These measurements are then used to study a wide variety of physics processes and issues such as laser-plasma interactions, the relationship of implosion symmetry to laser drive symmetry, the timing of shock wave coalescence, the effects of mix on convergence and burn profiles, the effects of hydrodynamic instabilities, and the accuracy of hydrodynamic simulations.
In addition, experiments are being designed for studying the transport of energetic electrons in materials relevant for “Fast Ignitor” ICF scenarios. Theoretical work has involved studies of the slowing down of charged particles in plasmas and the transport of energetic electrons in solids and plasmas. The focus of the work is developing novel diagnostics, furthering the understanding of ICF physics, and pursuing ignition. Another important goal is the education and training of young scientists and students.
Joint Press Release from MIT, Lawrence Livermore National Laboratory (LLNL), and the University of Rochester's Laboratory for Laser Energetics (LLE)
The joint press release heralds the recent paper published in the Physical Review Letters by group members Johan Frenje, C.K. Li, Fredrick Séquin, Dan Casey, and Richard Petrasso and their collaborators at LLE and LLNL. The paper "Measurements of the Differential Cross Sections for the Elastic n-3H and n-2H Scattering at 14.1 MeV by Using an Inertial Confinement Fusion Facility", represents the first fundamental nuclear physics result obtained from a high-energy-density facility. "With this class of experiments imminent, a new and exciting field of research is ushered in: plasma nuclear science, blending the disciplines of plasma and nuclear physics," said lead researcher Johan Frenje of MIT.
National Ignition Facility and Photon Science Awards
Congratulations to Johan Frenje, Hans Rinderknecht, Alex Zylstra and team members for receiving NIF Directorate Performance Awards. Three members in the MIT-HEDP division received the National Ignition Facility and Photon Science Award for their outstanding contributions in designing and implementing diagnostics that have been essential to the progress of the National Ignition Campaign (NIC). "Dr. Johan Frenje received the award for outstanding contributions in designing and implementing large scope, advanced neutron spectrometer in support of characterizing NIC implosions". PhD student "Hans Rinderknecht received the award for outstanding contributions in designing and implementing particle time-of-flight detector in support of characterizing NIC implosions.", and PhD student "Alex Zylstra received the award for outstanding contributions in designing and implementing proton spectrometer in support of characterizing NIC implosions".
New Paper by Chikang Li et al. in Science!
(A) Schematic of the experimental setup, with proton backlighter, hohlraum-driven implosion, CR-39 imaging detector, and laser drive beams. Fifteen laser beams entered each end of the hohlraum: 5 with incident angle 42° and 10 with angle 58.8°. The colors shown on the hohlraum wall indicate the laser intensity distribution [modeled by VISRAD]. The proton backlighter was driven by 30 laser beams with total laser energy ~ 11 kJ in a 1-ns square pulse. The 15 MeV D3He backlighting protons passed through the laser-driven hohlraum, sampling plasma conditions and capsule implosions at different times. Images in (B) show proton fluence (within each image, darker means higher fluence), while images in (C) show proton energy (within each image, darker means more proton energy loss and therefore more matter traversed). The gray-scale mapping for image display is different in each image. The capsule mounting stalk appears in the upper left corner of each image. Click the image to see the Science paper.
The HEDP Division was also featured in MIT-News
See also Ryan Rygg et al., 2008 in Science
This schematic drawing shows the monoenergetic proton radiography system MIT physicists
Members of the HEDP/ICF team in the experiment planning room, around 11 PM,
|
||
|
|